
MATHEMATICAL GAME MODELING

AND OPTIMIZATION

Optimizing Player Decisions in Old School Runescape

Palfore

16th October, 2020

Contents

Introduction . 3

I Combat 5

1 Overview 7
1.1 Autonomous Mechanics . 7

1.1.1 Combat Skills, Combat Triangle and Attack Styles 7
1.1.2 Equipment Bonuses . 8
1.1.3 Ticks and Attack Speed . 9
1.1.4 Summary . 10

1.2 Agency . 10
1.2.1 Special Attacks . 10
1.2.2 Temporary Boosts and Healing 10
1.2.3 Item Switching and Movement 10

2 Maximum Hits 11
2.1 Melee . 11
2.2 Ranged . 11
2.3 Magic . 11

3 Accuracy 13

4 Models 14
4.1 Important Quantities . 14
4.2 Crude . 14
4.3 Averaged Piecewise . 14
4.4 Piecewise . 14
4.5 Markov Chain . 14

5 Optimizing Player Equipment 15
5.1 The Projection Vector . 15
5.2 Set Reduction . 16

6 Optimizing Training Order 18
6.1 Dijkstra’s algorithm . 18

Appendices 19

A Justifying the Recursive Model Approximation 20

B Power Reduction in the Piecewise Recursive Model 22
B.1 Power Reduction . 23
B.2 Simplifying . 24

1

C Fighting Probabilities 25
C.1 Definitions . 25
C.2 Recursive Equation . 25
C.3 Solution . 26

C.3.1 Corner . 27
C.3.2 Top . 27
C.3.3 Left . 28
C.3.4 Interior . 28
C.3.5 Obtaining Power Series . 32

C.4 Summing over L . 37
C.5 Summary . 39
C.6 Comments . 39

II Woodcutting 40

III Mining 41

IV Quests 42

2

Introduction

Runescape (RS) is a popular Massively Multiplayer Online Role-Playing Game (MMORPG)
that was first publicly released on January 4’th, 2001 by the video game developer Jagex
Limited. Ranked as the 5’th most popular MMORPG in 2020 by several sources, this
game’s unique mechanisms and game play make it still successful nearly 20 years af-
ter it’s incarnation [1, 2, 3]. On the 20th of November 2012, a total overhaul to the
game’s combat system - an integral part of gameplay - caused a great divide among
it’s players. As a result, the game bifurcated into two versions: Runescape 3, and Old
School Runescape (OSRS). The latter was released on February 22, 2013 and reverted
to the old mechanics. For several reasons, this version of the game became dominant
and serves as the central topic in this text.

In typical role-playing fashion, the majority of game play centers around fighting
monsters and bosses, training skills, completing quests, playing mini-games, and col-
lecting items. This game is played over the course of months or years. In a few years,
there will even be some players who have played for decades. As the player base gained
a more comprehensive understanding of the game, their mentality has generally shifted
from one of discovery to one of efficiency. Many tools have been created with the goal
of improving player efficiency, optimizing game play, and maximizing success in difficult
challenges.

There are 23 skills that a player can train [4]. A player is rewarded experience for
certain actions related to a given skill. For example, cutting an Oak Tree yields 37.5
experience per log chopped. 83 Experience is required to go from level 1 to level 2,
while reaching the maximum level of 99 requires 13,034,431 total experience [5]. The
experience required to level up increases exponentially - hence the drive for efficiency [5].
There are several combat skills that directly influence a player’s fighting ability. Quests
are often completed for the special items, new training methods, and experience rewards
they provide. They have skill requirements and often make use of combat in defeating
difficult bosses. And so even in this basic overview, the complexity of the interactions
and relations between different actions a player can perform becomes apparent.

Figure 1: Some relevant interfaces/images that play a central role in game play. The skill panel
(left) shows the player’s levels in the 23 skills along with their total level (Image slightly modified from
Ref. [4]). The combat skills, attack, strength, defence, ranged, prayer, magic, and health (in the middle
column), are respectively outlined in red. The quest panel (middle) shows the player’s quests that are
completed, in progress, and not started (green, yellow, and red, respectively. Image from Ref. [6]). A
character that a player would control in a 3D world is shown on the right.

3

To understand player decisions and optimize them, we will be mathematically mod-
eling the in-game mechanics. A surprising variety of mathematical concepts and tech-
niques will be encountered. Additionally, algorithms derived from computer science are
required to solve some of these problems. This serves as an exciting field to explore,
with some very interesting results and visuals. Some of the details require high level
mathematical solutions/descriptions. With the interest of being digestible by a broad
audience with varying proficiencies, many arduous solutions are moved to the appendix
at the end of each part.

This text accompanies several additional resources:

1. Python open-source codebase, OSRSmath: https://github.com/Palfore/OSRSmath.

2. Video Series, Optimizing Runescape: https://www.youtube.com/watch?v=7N9UJX70Z5I&
list=PLm3INE_scU5s8NQWmw0fxKtA_6SVxDOc7&ab_channel=Palfore.

3. Discord Chatroom: https://discord.gg/4SXcKQh

4

https://github.com/Palfore/OSRSmath
https://www.youtube.com/watch?v=7N9UJX70Z5I&list=PLm3INE_scU5s8NQWmw0fxKtA_6SVxDOc7&ab_channel=Palfore
https://www.youtube.com/watch?v=7N9UJX70Z5I&list=PLm3INE_scU5s8NQWmw0fxKtA_6SVxDOc7&ab_channel=Palfore
https://discord.gg/4SXcKQh

Part I

Combat

5

List of Combat Related Terms and Associated Values

1. Combat Class: One of [melee, ranged, magic]

2. Attack Type: One of [stab, slash, crush, ranged, magic]

3. Combat Style: The name of the attack.

(a) For the melee combat class: One of [punch, kick, chop, hack, smash,

block, pound, pummel, slash, lunge, jab, swipe, fend, spike, impale,

reap, flick, lash, deflect, bash, focus, scorch]

(b) For the ranged combat class: One of [accurate, rapid, longrange, short

fuse, medium fuse, long fuse, flare]

(c) For the magic combat class: One of [spell, spell (defensive), blaze,

accurate, longrange]. The latter two only apply to Powered staves.

4. Attack Style:

(a) For the melee combat class: One of [accurate, aggressive, defensive, controlled]

(b) For the ranged combat class: One of [accurate, rapid, longrange]

(c) For the magic combat class: One of [standard, defensive]

5. Attack Speed: The number of ticks between attacks. Integer between 1 and 15.

6. Attack Interval: The number of second between attacks. Real number between
0.6s and 9s.

7. Attribute: When referring to an opponent/monster, their attribute is one of
[Demon, Draconic, Fiery, Kalphite, Leafy, Penance, Shade, Undead, Vampyre, Xerician].
In addition, we expand this to also include properties like: [On slayer task, In wilderness].

6

Chapter 1

Overview

In this chapter, we will discuss the various factors involved in combat. We will con-
sider combat in two stages. The first considers an autonomous fight in which the player
performs no actions once the initial conditions of the fight have been specified. An-
alyzing this system will allow us to calculate quantities like the expected number of
attacks required to defeat an opponent, and the probability of winning a fight. The
second considers active player decisions that occur during combat. This will allow us to
investigate the effect of performing actions on the aforementioned quantities. Policies
may be defined to mathematically model a player’s decision. As an example, a player
may use a healing item any time throughout a fight. To handle this, we can consider
a specific policy whereby the player will use a healing item when health is below some
threshold. Investigating this threshold will give us insight into how players should use
healing mechanics.

It is interesting to note that although the descriptions of in-game mechanics likely
have no real-world connections (since they are somewhat arbitrarily decided by the
game’s developers), the mathematics that can be applied to the dynamic variables re-
sulting from these mechanics can actually be applied and generalized to real-world set-
tings. We will begin with a discussion of the most relevant mechanics, however there
is an additional large body of information that can be found on the Official Wiki that
provides a greater overview.

1.1 Autonomous Mechanics

1.1.1 Combat Skills, Combat Triangle and Attack Styles

Combat is built around the so-called Combat Triangle which describes the relation be-
tween the three classes of combat in the game [7]. A Melee fighter makes use of close
quarters combat, typically wielding swords, daggers, halberds, etc. A Ranged fighter
makes use of bow and arrow, crossbows, and thrown objects to deal damage at a dis-
tance. Finally, a Mage will make use of staves and magical spells to do damage, also at
a distance. The combat triangle refers to the notation that melee users are (generally)
weak to magic, which is weak to ranged, which is weak to melee, and is depicted in
Fig. 1.1.

Some skills provide benefits to all fighters, while others are specific to the style:

1. Attack, La: Increases the accuracy of a melee attacker.

2. Strength Ls: Increases the maximum damage a melee attacker can do in a single
attack.

7

https://oldschool.runescape.wiki/w/Combat

3. Ranged Lr: Increases the accuracy and maximum damage of a ranged attacker.

4. Magic Lm: Most spells have a constant damage (with more powerful spells being
unlocked at higher levels), also some scale with magic level. Accuracy however
is generally increased with higher magic. In addition, defence against magical
attacks is partially determined by the player’s magic level.

5. Defence Ld: Decreases the probability that the opponent will have a sucessful
attack.

6. Prayer Lp: Acts as a depleteable resource that can boost combat skills.

7. Hitpoints Lh: Increases the amount of damage a player can receive before they
lose a fight.

The set of all combat levels is denoted {L}.
Every weapon has a set of attack styles that allow a player to change which combat

skill they train. In addition, the attack style may provide a small bonus to combat.
Prayer is the only skill that cannot be trained directly through combat. Hitpoints is
another exception in that a proportion of the experience awarded to the skill associated
with the player’s attack style is given to hitpoints.

1.1.2 Equipment Bonuses

Let’s begin discussing a fighter’s equipment by defining an item, I. Equipable items can
be worn in one of 11 slots. We let Islot represent the item in a given slot, where

slot ∈ {head, cape, neck, ammo, weapon, torso, shield, legs, hands, feet, ring}. (1.1)

Each item has some associated equipment bonuses. Most of these are constant, however
some bonuses are conditional. The constant bonuses can be represented as a vector:

~Islot
c = (Astab, Aslash, Acrush, Amagic, Aranged, (1.2)

Dstab, Dslash, Dcrush, Dmagic, Dranged, (1.3)

Sw, Sr, Sm, P, w, r). (1.4)

There are many terms to define, so we will explain them here. A, D, and S refers
to the attack, defensive, and strength bonuses, respectively. The attack and defence
bonuses are associated with the different attack types, while the strength bonuses are
associated with the combat class [SEE LIST OF TERMS]. The first three attack and
defence bonuses listed are associated with melee combat, the last two are associated with
magic, and ranged, respectively. There is a strength bonus associated with each combat
class. In the order above we have: melee/warrior, ranged, then magic. The prayer
bonus, P affects how long bonuses from the prayer skill can last without recharging. w
is the weight of the item. Finally, if the item is a weapon, r is the attack rate given by
r = 1/s, where s is the weapon attack speed. If it is not a weapon, r = 0. Note that we
use the rate since every other bonuses improves fighter ability. This allows us to use a
basic comparison operator (at the cost of using real numbers instead of integers).

The total constant equipment bonuses that a fighter has, Ec is given as the sum over
all the slots,

~Ec =
∑

slot∈{slots}

~Islot
c E . (1.5)

The in-game interface indicating these values is shown in Fig. 1.1. There are a number
of conditional effects that may not appear in this interface.

8

The conditional bonuses can be further divided into special/attribute bonuses and
equipment set bonuses. Monsters may have a particular weakness due to their so-called
attribute. For example, a Iron dragon would be dragonic, and dragonbane weapons
would provide an accuracy and damage multiplier. In this sense, we can consider these
bonuses to be dependent on information that the item itself does not know, and so we
represent these special bonuses as an operator Îs. When acting on a fighter’s environ-
ment E , these bonuses become concrete:

~Es = ÎsE (1.6)

Set effects are also similar except that they are conditional on equipment the player is
wearing. For this reason, (and the fact that there are other special cases), we group all
these effects into the special bonus operator, Îs from above. The total bonuses from all
the player’s items can be represented as:

~E = ~Ec ∪ ~Es (1.7)

=
∑

slot ∈ {slots}

~Islot
c ∪ ÎsE , (1.8)

The definition of environment is intentionally vague, as there are a myriad of con-
ditions, essentially limited only by developer imagination and infrastructure. Some of
these conditions/dependencies include: attacker & opponent equipment & levels, at-
tack style (which implies combat class), whether a particular Diary is completed, the

attribute of the opponent, and so on. The elements and details of ~Es are also purpose-
fully vague, as there is an additional caveat that makes these a bit trickier to handle both
mathematically but more-so programatically. Unlike the constant bonuses, which can
be added together, special bonuses are generally multiplicative but also make use of in-
termediate flooring. This makes the special bonus operator non-commutative, since the
order does effect the rounding.1 This means that a vector representing special bonuses
would essentially have as many elements as the number of special items! So it is often
easier to work on each bonus type with different methods. For this reason, special effects
and constant bonuses are treated independent, making the union above more symbolic
than practical.

1.1.3 Ticks and Attack Speed

At a fundamental level the entire game operates on a tick-based system. Every 0.6
seconds (called a tick) the game updates. This discretizes the possible game states,
and typically means we will be dealing with sums in place of integrals, and recursive
equations in place of differential equations.

Once an attacker begins combat with an opponent, the fight continues until either is
defeated, or one runs away. The attacks occur at an interval associated with the weapon.
Different weapons have different Attack Speeds, typically between 3-9 game ticks (1.8s
- 5.4s). The attacker’s attack speed A|s, is the number of ticks between attacks. On
each attack, the player’s accuracy will determine the probability of a successful hit. On
a successful hit, a number between 0 and the player’s maximum hit will be uniformly
sampled as the damage the player does.

A notable consequence of this tick-based system is that a series of precise player
actions known as tick-manipulation allows players to perform multiple actions in a single
tick, or to take advantage of mechanisms like tick-eating, allowing a player to survive
otherwise fatal attacks.

1The specific ordering of the flooring operations is taken from ref. [bitter-dps calc]. Although, this
author is unsure if that ordering is arbitrary, but we assume not. [Reference max hit section?]

9

Figure 1.1: The attack styles (left), equipment slots and associated equipment bonuses (middle)
along with a depiction of the combat triangle (right). The attack styles for the Dragon Claws are
Chop, Slash, Lunge, Block and give experience specifically to Attack, Strength, shared, and Defence,
respectively. Shared means experience is split equally. In the equipment panel, the player is not wearing
any equipment which results in 0 bonuses for all attributes. Starting with the bottom left of the combat
triangle, a mage has advantage over the melee equipment typically worn by a melee fighter, a melee
warrior has an advantage over the equipment typically worn by a ranged fighter, and ditto for ranged
to mage.

1.1.4 Summary

A fighter has some combat skill levels and will (typically) equip some armour and a
weapon. They will select an attack style, which selects the skill they will receive expe-
rience in, and which equipment bonuses plays a roll in the accuracy calculation. The
problem then reduces to considering an accuracy and maximum hit. Once a fight be-
gins, an attack occurs every couple of ticks. If the attack is successful, a uniform integer
between 0 and their max hit is delivered to the opponent, reducing their current hit
points. Once a fighter’s health reaches 0, the fight is over.

1.2 Agency

1.2.1 Special Attacks

Certain weapons have the ability to use a special attack, typically dealing additional
damage, but may also reduce the opponent’s levels temporarily.

1.2.2 Temporary Boosts and Healing

Potions provide temporary boosts to skill levels.

1.2.3 Item Switching and Movement

Different items, moving around. Attack delays etc.

10

Chapter 2

Maximum Hits

2.1 Melee

m0 =

⌊
1

2
+

64 + Estrength

640

⌊⌊
L̄strengthBprayer +Bstance

⌋
Bvoid melee

⌋⌋
(2.1)

m = (B2(B1(BslayerBsalvem0))) (2.2)

B1 ∈ {arclight, LBB, DHC, DHL, C/V, TB} (2.3)

B2 ∈ {obsidian, crystal, inquisitor} (2.4)

(2.5)

2.2 Ranged

The maximum ranged hit is given by:

m =
⌊
c0 + c1L

eff
r + c2Sr + c3L

eff
r Sr

⌋
(2.6)

Leff
s ≡ b(Lr +Bpotion)BprayerBother + Sc (2.7)

{ci} =

{
1.3,

1

10
,

1

80
,

1

640

}
. (2.8)

For ranged,

S =

{
3 if style is accurate

0 Otherwise
. (2.9)

Note that if the attack style is set to rapid, the weapon attack speed is increased by 1
tick. A list of Bpotion, Bprayer, and (incomplete) Bother can be found in Ref. [8].

2.3 Magic

Magic differs slightly, so we need a few additional definitions. First we define mspell as
the base max hit of the player’s spell/staff. Some of these depend on the player’s magic
level. A list of these can be found in Ref. [9]. Then there are several special items, listed
below as an associated bonus Bother and either an additive toggle δ̄item which is 1 or
0 based on the accompanying condition or a multiplicative toggle δitem which is either
Bitem

other or 1 based on the accompanying condition.

11

1. Bchaos
other = 3, δ̄chaos if a bolt spell is used along with Chaos gauntlets.

2. Btome
other = 1.5, δtome if a fire spell is used along with a Tome of fire.

3. Bcastlewars
other = 1.2, δcastlewars if a Castle wars bracelet is worn while attacking a

flag bearer.

4. Bsalve
other = varies, δsalve if any variant of the salve amulet is worn while attacking

an undead.

5. Bslayer
other = 1.15, δslayer if any variant of the imbued black mask is worn while at-

tacking slayer task monster.

Then the maximum magic hit is given by:

m =
⌊⌊⌊⌊

(mspell +Bchaos
other δ̄chaos) ∗ (1 + Sm)

⌋
δsalveδ̄salve + (1− δ̄salve)δslayer

⌋
δtome

⌋
δcastlewars

⌋
(2.10)

12

Chapter 3

Accuracy

13

Chapter 4

Models

4.1 Important Quantities

4.2 Crude

4.3 Averaged Piecewise

4.4 Piecewise

4.5 Markov Chain

14

Chapter 5

Optimizing Player Equipment

In Section 1.1.2 we discussed the basic formulation of equipment bonuses. In this chap-
ter, we will be interested in optimizing the player’s choice of equipment to maximize
some metric. Some examples of these metrics would be combat experience per hour,
number of kills per hour, probability of winning, and so. Since the goal of the player
may vary heavily, we aim to produce a general framework that can maximize arbitrary
objective functions.

There are a large number of items that a player can equip in each slot, typically
ranging from 10-100 considerations. Exhaustively considering each possible combination
of equipment would result in roughly 1010 to 10010 possible sets. It is obvious then, that
brute force would not work. We aim to reduce the number of possible equipments
loadouts, L that we must consider. A loadout is simply the set of equipment that a
fighter is wearing:

L = {Islot | slot ∈ slots}. (5.1)

To do this, we will reduce redundant equipment choices for each slot such that we end
with a set of possibly optimal loadouts. The only way to determine which of those is
the actual optimal solution, L∗ is to numerically evaluate the value of the objective, f ,
for each possibly optimal loadout. This defines our optimization problem as:

L∗ ← argmin
L∈{L}

f(L). (5.2)

So we will begin by reducing the size of the set {L}.

5.1 The Projection Vector

Different optimization problems require different information about the player’s equip-
ment. For example, when straightforwardly optimizing pure damage output (typically
measured in kills per hour), the defensive bonuses of the player are irrelevant. By
contrast, trying to maximize the probability of killing an opponent would require con-
sideration of those defensive bonuses. Furthermore, a fighter only attacks with one
attack style at a time. So clearly, not all bonuses are required for every optimization.
For this reason, we introduce a projection vector, ~p, that will select the bonuses that
matter. Recall that our bonuses are divided into two groups: constant bonuses, and
special bonuses. In Section 1.1.2, we discussed how we treat special bonuses differently.
So we will ignore them for now, and focus on the constant bonuses, ~Islot

c . To select

out the desired bonuses, we make ~p the same length as ~Islot
c so that each element in ~p

15

corresponds to an equipment bonus. We can do so-called one-hot encoding, where we
set elements to either 0 or 1 depending on whether the corresponding equipment bonus
should be considered.

An element-wise multiplication (also known as a Hadamard product) of these two

vectors, ~Islot
c � ~p contains the bonuses of the item that we want, and 0’s for bonuses

we don’t want to consider. To compare different items we need to define a comparison
operator, Ĉ(·, ·) such that:

Ĉ(~Islot
c,1 ,

~Islot
c,2 ; ~p) =

{
1 if ∃ i ∈ [1, n] | (~Islot

c,1 � ~p)i > (~Islot
c,2 � ~p)i

0 otherwise,
(5.3)

where n is the number of bonuses for an item can have, and (·)i represents the i’th
bonus. By simply comparing the individual item bonuses, this term indicates whether
some item, ~Islot

c,1 , provides some advantage over another, ~Islot
c,2 . If a given item doesn’t

provide some advantage over any other item then it doesn’t need to be included in the
set of equipment to consider. Note that Ĉ(~Islot

c,1 ,
~Islot
c,1 ; ~p) = 0.

5.2 Set Reduction

With this, we can reduce the set of possible items in given slot, {Islot
j }

Nslot
j=1 , where Nslot

is the number of possible items in that slot. We can define the following matrix,

A~p = A~pij = Ĉ(~Islot
c,i , ~Islot

c,j ; ~p), (5.4)

that is also one-hot encoded with 1’s representing that the item in column i provides
some advantage over the item in row j, for our optimization problem.

These individual item comparisons aren’t too important, instead we care if an item
may provide some advantage over any other in the set. So, an item shouldn’t be con-
sidered if the comparison yields 0 when compared against all other items:

N∑
i=1

Ĉ(~Islot
c,j , ~Islot

c,i ; ~p) = 0 (5.5)

=⇒
N∑
i=1

A~pij = 0 (5.6)

=⇒ 1 ·A~p
j = 0 (5.7)

where 1 is a Nslot-dimensional vector containing ones, and A~p
j is the j’th column in A~p.

Then the reduced set of items for a given slot is then:

{Islot
j ; ~p}N̄slot

j=1 = {Islot
j |1 ·A~p

j 6= 0, 1 ≤ j ≤ Nslot}, (5.8)

where N̄slot is the number of items left in this reduced set. The possibly optimal loadout
set can be constructed as a “n-ary” Cartesian product:

{L̄; ~p} = {(Ihead, ..., Iring)|Islot ∈ {Islot
j ; ~p}N̄slot

j=1 ∀ slot ∈ {slots}} (5.9)

As mentioned earlier, the choice of ~p depends on the problem at hand. However, only
one attack style is generally considered and so often ~p can be chosen to only consider
one attack style.1 A natural formulation would be to iterate over each attack style. We

1If the fighter switches weapons, or has multiple attacks, considering more than one attack style
would then be required.

16

can, for example, use ~pstab to denote a projection vector which has stab as the only
non-zero attack bonus. Then, the total set of considerations is the union of the specific
attack style sets:

{L̄; ~p} =
⋃

a∈{attack styles}

{L̄; ~pa}. (5.10)

This makes our optimization:

L∗ ← argmin
L∈{L̄;~p}

f(L), (5.11)

which has reduced a search space containing billions of possibilities to one containing
(empirically) less than 1,000.

17

Chapter 6

Optimizing Training Order

6.1 Dijkstra’s algorithm

18

Appendices

19

Appendix A

Justifying the Recursive
Model Approximation

We begin with Eq. (??) which we will restate here with hm → xn:

xn+1 = xn −
xn
2

(
2− xn + 1

M + 1

)
. (A.1)

This formulation looks similar to Newtons method for finding the root of f(x), which is
given as

xn+1 = xn −
f(xn)

f ′(xn)
. (A.2)

After some algebra we find that,

f(xn)

f ′(xn)
= xn(1− γxn). (A.3)

This can be easily solved for f(x) since this is a separable equation:

df

f
=

dx

x(1− γx)
(A.4)∫

df

f
=

∫
dx

x(1− γx)
(A.5)

ln(f) = ln |x| − ln |γx− 1|+ C (A.6)

f(x) = eC |x||γx− 1| (A.7)

The error, ε in the next iteration of Newtons method is given as,

εn+1 = ε2n

∣∣∣∣ f ′′(r)2f ′(r)

∣∣∣∣ , (A.8)

where r is the root we desire. In this case the root we want is,

lim
n→∞

xn = 0 (A.9)

since this corresponds to the health reaching zero. The ratio becomes,∣∣∣∣ f ′′(r)2f ′(r)

∣∣∣∣ = γ, (A.10)

20

which simplifies the error equation to,

εn+1 = γε2n. (A.11)

This is exactly the same recursive equation we had before! Except that now we have
error in health instead of health. So how does this connect? Since we already know the
root value (which is 0), the error becomes the upper bound on the health. This means
that if we have an error of, for example, 1 that the health must be below that. So, by
solving ε = h we can find the number of iterations required to reach below that health.
This solution is already given earlier but in the context of error we have,

εn =
1

γ

(
1

2
− γ
)2n

(A.12)

n = log2 log 1
2−γ

(γε). (A.13)

This has done two things: justify the use exclusion of the hm term in the original
recursive equation (instead of excluding h2

m), and provided a second interpretation of
the meaning of h = 1. The error comes from a Taylor series, but interestingly all higher
order terms die off so this is actually exact. This suggests that for higher precision, the
assumption that ε is small is violated and the Taylor series formulation no longer holds.

21

Appendix B

Power Reduction in the
Piecewise Recursive Model

The average damage described in Section ?? can be expanded to give,

〈D〉overall =
1

h0

(
h0∑

n=M+1

M

2
+

y∑
n=1

n

2

(
2− n+ 1

M + 1

))
(B.1)

=
1

h0

(
M

2
(h0 − y) +

y∑
n=1

n− 1

2

y∑
n=1

n
n+ 1

M + 1

)
(B.2)

=
1

2h0

(
Mh0 −My + y(y + 1)− 1

2(M + 1)

y∑
n=1

(n2 + n)

)
(B.3)

=
1

2h0

(
Mh0 −My + y(y + 1)− y(y + 1)

2(M + 1)
− y(n+ 1)(2y + 1)

6(M + 1)

)
(B.4)

=
1

2h0(M + 1)

(
M2h0 −M2y +My2 + yM +Mh0 −My − y3 − y

3

)
(B.5)

=
y(y + 1)

h0(M + 1)

(
M(M + 1)h0

2y(y + 1)
+

(y −M)M

2(y + 1)
− y − 1

6

)
(B.6)

=
y(y + 1)

h0(M + 1)

(
M(M + 1)h0

2y(y + 1)
+

(y −M)M

2(y + 1)
+
y + 1

2
− 1

3
(2y + 1)

)
(B.7)

where y = min(M,h0). In the second line, we used:

b∑
a+1

1 =

{
b− a if b > a

0 else
(B.8)

= b−

{
a if b > a

0 else
(B.9)

= b−min(a, b) (B.10)

22

To finish, let’s focus on,

M(M + 1)h0

2y(y + 1)
+

(y −M)M

2(y + 1)
+
y + 1

2
(B.11)

=
1

2y(y + 1)

[
M(M + 1)h0 + y(y −M)M + y(y + 1)2

]
(B.12)

=
1

2y(y + 1)

[
M2h0 +Mh0 +My2 −M2y + y3 + 2y2 + y

]
. (B.13)

This is a hard equation to simplify since the M ’s and h0’s are implicitly embedded in
the y’s, but if you play with it long enough you can “discover” a way to simplify it - a
form power reduction that relies on getting rid of as many y’s as possible.

B.1 Power Reduction

I’d like to preface the next part by saying the final result can easily be determined by
plugging in m as the min, and h0 as the min and combining the result. In this instance
it works out nicely, but we will focus on general machinery to solve these problems
assuming the solution was not so nice. Our goal here is to pull the m’s and h0’s out of y.
To do this, let’s see if there is a way to construct y2 from the other variables, specifically
only using y1. We know that if M < h0, we need a term like M2, and in the opposite
case, we need a term like h2

0,

y2 ∼M2 or h2
0. (B.14)

Based on this, we should be able to use min to switch between these two. So if we
write the first term using y, we’d have something like My, which is true when M is the
minimum. If it isn’t the minimum, there should be a second term which cancels the now
Mh0 term plus the required h2

0 term:

y2 = My + h0(y −M) (!) (B.15)

Using the same logic, we can inductively deduce,

yn+1 = Myn + hn0 (y −M) = Myn + hn0y −Mhn0 . (B.16)

(and as an identity for the math people, with γ = min(a, b)):

γn+1 = aγn + bn(γ − a) = aγn + bnγ − abn (B.17)

In fact, this holds for max as well, or any similar piece-wise function. Writing this as a
recursive sequence by letting g(n) = γn yields,

g(n+ 1) = ag(n) + bn(g(1)− a), (B.18)

Under the initial condition g(1) = γ, WolframAlpha gives the general solution as,

g(n) = an + (γ − a)
an − bn

a− b
(B.19)

g(n) = an + (γ − a)

n−1∑
i=0

an−i−1bj , (B.20)

23

https://www.wolframalpha.com/input/?i=g%28n%2B1%29%3Da*g%28n%29%2Bb%5En%28C-a%29

where the second line uses the difference of powers formula. This could have been solved
by hand, but we’ve had enough fun with recursion in the other sections! This yields,

g(1) = γ (B.21)

g(2) = a2 + (γ − a)(a+ b) (B.22)

= a2 + aγ − a2 + bγ − ab (B.23)

= aγ + b(γ − a) (B.24)

g(3) = a3 + (γ − a)
a3 − b3

a− b
(B.25)

= a3 + (γ − a)(a2 + ab+ b2) (B.26)

= a3 + γa2 + γab+ γb2 − a3 − a2b− ab2 (B.27)

= γa2 + γab+ γb2 − a2b− ab2. (B.28)

These agree with the original iterative equation. Okay, so this is a bit overkill since at
most y3 appears, so having general powers isn’t too helpful. Nonetheless, we can now
reduce the powers of y in the original equation, and see how that simplifies things.

B.2 Simplifying

We can now reduce the bracketed term in Eq. B.13:

M2h0 +Mh0 +My2 −M2y + y3 + 2y2 + y (B.29)

= M2h0 +Mh0 +M2y + h0yM − h0M
2 −M2y + yM2 + yMh0 + yh2

0+ (B.30)

−M2h0 − h2
0M + 2My + 2h0y − 2h0M + y (B.31)

=
(
−M2y + yM2 +M2y + yMh0 + yh2

0 + 2My + 2h0y + y + h0yM
)

+ (B.32)(
M2h0 +Mh0 − h0M

2 +−M2h0 − h2
0M − 2h0M

)
(B.33)

=
(
2My + 2h0y + y + 2yMh0 +M2y + yh2

0

)
+
(
−M2h0 − h2

0M − h0M
)

(B.34)

Having eliminated the “hidden” variables, let’s try to re-group into powers of y:

= y2 +
(
My + h0y + y + 2yMh0 +M2y + yh2

0

)
+
(
−M2h0 − h2

0M
)

(B.35)

= 2y2 + y + 2yMh0 +M2y + yh2
0 +−M2h0 − h2

0M +Mh0 (B.36)

= y2M + y + y2 + y2h0 + y2 +Mh0 (B.37)

= y (yM + yh0 + y +M + h0 + 1) (B.38)

= y (y + 1) (M + h0 + 1) (B.39)

Putting this into the corresponding term in Eq. B.7 gives

1

2y(y + 1)
y(y + 1) (M + h0 + 1) =

1

2
(M + h0 + 1) (B.40)

and so finally we arrive at,

〈D〉overall =
y(y + 1)

h0(M + 1)

[
1

2
(M + h0 + 1)− 1

3
(2y + 1)

]
. (B.41)

24

Appendix C

Fighting Probabilities

C.1 Definitions

c+ =
a

m+ 1
(C.1)

c∗ = mc+ (C.2)

c0 = 1− c∗ (C.3)

(C.4)

C.2 Recursive Equation

The probability the player does n damage to their opponent is given by:

P (X = n) =

c0, if n = 0

c+, if 1 ≤ n ≤ m
0, for n < 0 or m < n

(C.5)

To be explicit, this tells us that c0 is the probability of hitting a zero, and c+ is the
probability of doing damage. In one turn, the opponent can be brought to a given health
i, from their initial health h according to the transition probability,

πh,i =

{
P (X = h− i) if i > 0

P (X ≥ h) if i = 0
(C.6)

25

as given in Nukelawe’s work. The probability they are killed in L turns can be given by
the sum of the probabilities the opponent was brought to i, then killed in L− 1 turns:

Ph,L =

∞∑
i=0

πh,iPi,L−1 (C.7)

=�����
πh,0P0,L−1 + πh,hPh,L−1 +

h−1∑
i=1

πh,iPi,L−1 +

∞∑
i=h+1

πh,iPi,L−1 (C.8)

= c0Ph,L−1 +

h−1∑
i=1

πh,iPi,L−1 +

��
���

���∞∑
i=h+1

πh,iPi,L−1 (C.9)

Ph,L = c0Ph,L−1 + c+

h−1∑
i=max(h−m,1)

Pi,L−1 (C.10)

(C.11)

where in the second line, the i = 0, h terms are explicitly considered, and the remaining
sum is split in two. In the third line, πh,i would correspond to healing (and the n = 0
condition in Eq. (C.5)) and is therefore zero. In the final line, we get the lower bound
by considering that

1 ≤ i ≤ h− 1 =⇒ πh,i = c+ if 1 ≤ h− i ≤ m otherwise 0, (C.12)

=⇒ 1 ≤ h− i and h− i ≤ m (C.13)

∴ i ≤ h− 1 and h−m ≤ i. (C.14)

Since the first condition is already met, we have that i ≥ h −m, but i also cannot be
below 1, hence i ≥ max(h−m, 1).

C.3 Solution

The recursive equation to solve is:

Ph,L = c0Ph,L−1 + c+
∑
i∈Ih

Pi,L−1, L ≥ 2, h ≥ 1 (C.15)

(C.16)

where Ih is the set of integers satisfying h−1 ≥ i ≥ max(h−m, 1). The initial conditions
are given by:

Ph,1 = c+ max(m− h+ 1, 0) (C.17)

P1,L = c∗c
L−1
0 (C.18)

P1,1 = c∗ (C.19)

26

Using a generating function:

g(x, y) =

∞∑
h=1

∞∑
L=1

Ph,Ly
hxL (C.20)

=

∞∑
h=1

(
Ph,1y

hx+

∞∑
L=2

Ph,Ly
hxL

)
(C.21)

=

∞∑
h=1

Ph,1y
hx+

∞∑
h=1

∞∑
L=2

Ph,Ly
hxL (C.22)

= xyP1,1 +

∞∑
h=2

Ph,1y
hx+

∞∑
L=2

(
P1,Lyx

L +

∞∑
h=2

Ph,Ly
hxL

)
(C.23)

= xyP1,1 + x

∞∑
h=2

Ph,1y
h +

∞∑
L=2

P1,Lyx
L +

∞∑
L=2

∞∑
h=2

Ph,Ly
hx (C.24)

= xyP1,1 + x

∞∑
h=2

Ph,1y
h + y

∞∑
L=2

P1,Lx
L +

∞∑
L=2

∞∑
h=2

Ph,Ly
hxL (C.25)

(C.26)

These are the boundaries of a grid (corner + top + left) plus a sum over the interior.

C.3.1 Corner

Let’s focus on each term at a time, starting with the corner:

xyP1,1 = xyc∗ (C.27)

C.3.2 Top

For the top, lets first note that max(m− h+ 1, 0) is non-zero when m− h+ 1 ≥ 1 =⇒
m ≥ h. Then,

x

∞∑
h=2

Ph,1y
h = c+x

∞∑
h=2

max(m− h+ 1, 0)yh (C.28)

= c+x

m∑
h=2

(m− h+ 1)yh (C.29)

(C.30)

27

C.3.3 Left

Now the left:

y

∞∑
L=2

P1,Lx
L = y

∞∑
L=2

c∗c
L−1
0 xL (C.31)

= y
c∗
c0

∞∑
L=2

(c0x)L (C.32)

= y
c∗
c0

[∞∑
L=0

(c0x)L − 1− c0x

]
(C.33)

= y
c∗
c0

[
1

1− c0x
− 1− c0x

]
(C.34)

= y
c∗
c0

1

1− c0x
[1− (1− c0x)− (1− c0x)c0x] (C.35)

= y
c∗
c0

1

1− c0x
[
c20x

2
]

(C.36)

= y
c∗
c0

c20x
2

1− c0x
(C.37)

(C.38)

C.3.4 Interior

Now the interior:

∞∑
L=2

∞∑
h=2

Ph,Ly
hxL =

∞∑
L=2

∞∑
h=2

(
c0Ph,L−1 + c+

∑
i∈Ih

Pi,L−1

)
yhxL (C.39)

=

∞∑
L=2

∞∑
h=2

c0Ph,L−1y
hxL + c+

∞∑
L=2

∞∑
h=2

∑
i∈Ih

Pi,L−1y
hxL (C.40)

I(x, y) = G(x, y) +R(x, y). (C.41)

28

Let us also tackle this individually, starting with the ‘g’ term:

∞∑
L=2

∞∑
h=2

c0Ph,L−1y
hxL = c0

∞∑
L=1

∞∑
h=2

Ph,Ly
hxL+1 (C.42)

= c0x

∞∑
L=1

∞∑
h=2

Ph,Ly
hxL (C.43)

= c0x

∞∑
L=1

(∞∑
h=1

Ph,Ly
hxL − P1,Lyx

L

)
(C.44)

= c0x

∞∑
L=1

∞∑
h=1

Ph,Ly
hxL − c0xy

∞∑
L=1

P1,Lx
L (C.45)

= c0xg(x, y)− c∗c0xy
∞∑
L=1

cL−1
0 xL (C.46)

= c0xg(x, y)− c∗c0x2y

∞∑
L=1

cL−1
0 xL−1 (C.47)

= c0xg(x, y)− c∗c0x2y

∞∑
L=0

cL0 x
L (C.48)

= c0xg(x, y)− c∗c0x
2y

1− c0x
(C.49)

(C.50)

For R, we will first need a term that tells us whether h is in the set I, i.e. does h
satisfy h − 1 >= max(m − h, 1)? You will actually see that we need the more general
h− 1 >= max(m− h+ n, 1). We will call this condition δnm,h which is 1 if satisfied and
0 otherwise. Empirically, this can be expressed as:

δnm,h =

0 if h = 1

0 if n > m

1 otherwise

(C.51)

Since h >= 2,

δnm,h = δnm =

{
1 if n ≤ m
0 otherwise

(C.52)

29

Now solving R(x, y) = c+
∑∞
L=2

∑∞
h=2

∑
i∈I Pi,L−1y

hxL gives:

R(x, y) = c+

∞∑
L=2

∞∑
h=2

h−1∑
i=max(h−m,1)

Pi,L−1y
hxL (C.53)

= c+x

∞∑
L=1

∞∑
h=2

h−1∑
i=max(h−m,1)

Pi,Ly
hxL (C.54)

= c+xy

∞∑
L=1

∞∑
h=1

h∑
i=max(h−m+1,1)

Pi,Ly
hxL (C.55)

= c+xy

∞∑
L=1

∞∑
h=1

Ph,Lδ1
m +

h−1∑
i=max(h−m+1,1)

Pi,L

 yhxL (C.56)

= c+xy

∞∑
L=1

∞∑
h=1

Ph,Lx
Lδ1
m + c+xy

∞∑
L=1

∞∑
h=1

h−1∑
i=max(h−m+1,1)

Pi,Ly
hxL (C.57)

(C.58)

Notice that the h = 1 term in the second set of sums yields 0.

= c+xyg(x, y)δ1
h + c+xy

∞∑
L=1

∞∑
h=2

h−1∑
i=max(h−m+1,1)

Pi,Ly
hxL (C.59)

= c+xyg(x, y)δ1
h + c+xy

2
∞∑
L=1

∞∑
h=1

h∑
i=max(h−m+2,1)

Pi,Ly
hxL (C.60)

= c+xyg(x, y)δ1
h + c+xy

2
∞∑
L=1

∞∑
h=1

 h∑
i=max(h−m+2,1)

Pi,L

 yhxL (C.61)

= c+xyg(x, y)δ1
h + c+xy

2
∞∑
L=1

∞∑
h=1

Pi,Lδ2
m +

h∑
i=max(h−m+2,1)

Pi,L

 yhxL (C.62)

= c+xyg(x, y)δ1
h + c+xy

2
∞∑
L=1

∞∑
h=1

Pi,Lδ
2
m + c+xy

2
∞∑
L=1

∞∑
h=1

h∑
i=max(h−m+2,1)

Pi,Ly
hxL

(C.63)

= c+xyg(x, y)δ1
h + c+xy

2g(x, y)δ2
m + c+xy

2
∞∑
L=1

∞∑
h=1

h∑
i=max(h−m+2,1)

Pi,Ly
hxL (C.64)

(C.65)

These series continues until the ‘engine’ producing terms has no more. The number of
terms in this series is given by the maximum n that is non-zero:

arg max
n

δnm = m, (C.66)

and so,

R(x, y) = c+xg(x, y)

m∑
i=1

yi (C.67)

30

Now let’s combine everything:

g(x, y) = xyc∗ + c+x

m∑
h=2

(m− h+ 1)yh +
�

���
��

y
c∗
c0

c20x
2

1− c0x
+ c0xg(x, y)−

�
�

�
�c∗c0x
2y

1− c0x
+ c+xg(x, y)

m∑
i=1

yi

(C.68)

= c+x

m∑
h=1

(m− h+ 1)yh + c0xg(x, y) + c+xg(x, y)

m∑
i=1

yi (C.69)

Isolating for g(x, y):

g(x, y)− c0xg(x, y)− c+xg(x, y)

m∑
i=1

yi = c+x

m∑
h=1

(m− h+ 1)yh (C.70)(
1− c0x− c+x

m∑
i=1

yi

)
g(x, y) = c+x

m∑
h=1

(m− h+ 1)yh (C.71)

g(x, y) = x
c+
∑m
h=1(m− h+ 1)yh

1− (c0 + c+
∑m
i=1 y

i)x
(C.72)

g(x, y) =

∞∑
h=1

∞∑
L=1

Ph,Ly
hxL = x

c+
∑m
h=1(m− h+ 1)yh

1− (c0 + c+
∑m
i=1 y

i)x
(C.73)

To simplify, let’s define:

T (y) = c+

m∑
h=1

(m− h+ 1)yh (C.74)

B(y) = c0 + c+

m∑
i=1

yi (C.75)

(C.76)

Now g(x, y) can be written as,

g(x, y) = T (y)
x

1−B(y)x
. (C.77)

31

C.3.5 Obtaining Power Series

To find the series representation of this, we will require the following identities:

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk (C.78)

(x− y)n =

n∑
k=0

(
n

k

)
(−1)kxn−kyk (C.79)

1

(1− z)β
=

∞∑
k=0

(
k + β − 1

k

)
zk (C.80)

n∑
k=0

rk =
1− rn+1

1− r
(C.81)

Let us start with:

1

1−B(y)x
=

∞∑
k=0

Bk(y)xk (C.82)

(C.83)

We need to workout Bk(y):

Bk(y) =

c0 + c+

m∑
j=1

yj

k

(C.84)

=

k∑
i=0

(
k

i

)
ck−i0 ci+

 m∑
j=1

yj

i

(C.85)

= ck0

k∑
i=0

(
k

i

)(
c+
c0

)i m∑
j=1

yj

i

(C.86)

(C.87)

32

Now, we would like to handle the last term, m∑
j=1

yj

i

=

 m∑
j=0

yj − 1

i

(C.88)

=

(
1− ym+1

1− y
− 1

)i
(C.89)

=

(
1− ym+1 − 1 + y

1− y

)i
(C.90)

=
(y − ym+1)i

(1− y)i
(C.91)

= (y − ym+1)i ·
∞∑
j=0

(
j + i− 1

j

)
yj (C.92)

= (y − ym+1)i ·
∞∑
j=0

(
j + i− 1

j

)
yj (C.93)

=

i∑
l=0

(
i

l

)
(−1)lyi+lm ·

∞∑
j=0

(
j + i− 1

j

)
yj (C.94)

=

∞∑
j=0

i∑
l=0

(−1)l
(
i

l

)(
j + i− 1

j

)
yi+j+lm (C.95)

(C.96)

where in the first line, Eq. (C.80) was used. In the second line, Eq. (C.79) was used.
We also note that the expansion requires i > 1. We can simplify this by defining,

ail,j ≡ (−1)l
(
i

l

)(
j + i− 1

j

)
(C.97)

leaving us with m∑
j=1

yj

i

= yi
∞∑
j=0

i∑
l=0

ail,jy
j+lm (C.98)

This needs to be cast as a regular power series. For this, we turn to a visual proof
[Omitted], which yields:

∞∑
j=0

i∑
l=0

ail,jy
j+ml =

∞∑
j=0

min(bj/mc,i)∑
l=0

ail,j−ml

 yj . (C.99)

If we define,

Aj,i ≡
min(bj/mc,i)∑

l=0

ail,j−ml, (C.100)

then,
∞∑
j=0

i∑
l=0

ail,jy
j+ml =

∞∑
j=0

Aj,iy
j . (C.101)

33

And so, m∑
j=1

yj

i

= yi
∞∑
j=0

Aj,iy
j . (C.102)

Expanding fully gives, m∑
j=1

yj

i

=

∞∑
j=0

min(bj/mc,i)∑
l=0

(−1)l
(
i

l

)(
j −ml + i− 1

j −ml

) yi+j . (C.103)

Returning to Bk(y):

Bk(y) = ck0

k∑
i=0

(
k

i

)(
c+
c0

)i m∑
j=1

yj

i

(C.104)

= ck0

1 +

k∑
i=1

(
k

i

)(
c+
c0

)i ∞∑
j=0

Aj,iy
i+j

 (C.105)

= ck0

1 +

∞∑
j=0

k∑
i=1

(
k

i

)(
c+
c0

)i
Aj,iy

i+j

 (C.106)

(C.107)

To handle this, we’ll define,

Dk
i,j =

(
k

i

)(
c+
c0

)i
Aj,i, (C.108)

making,

Bk(y) = ck0

1 +

∞∑
j=0

k∑
i=1

Dk
i,jy

i+j

 , (C.109)

and make use of the identity [visual proof is also omitted]:

∞∑
j=0

k∑
i=1

ai,jy
i+j =

∞∑
j=1

min(j,k)∑
i=1

ai,j−i

 yj . (C.110)

This leaves us with,

Bk(y) = ck0

1 +

∞∑
j=1

min(j,k)∑
i=1

Dk
i,j−i

 yj

 . (C.111)

We further simplify:

Fj,k ≡
min(j,k)∑
i=1

Dk
i,j−i, (C.112)

leaving us finally with:

Bk(y) = ck0

1 +

∞∑
j=1

Fj,ky
j

 . (C.113)

34

So our original formula becomes,

1

1−B(y)x
=

∞∑
k=0

ck0

1 +

∞∑
j=1

Fj,ky
j

xk (C.114)

=⇒ x

1−B(y)x
=

∞∑
k=1

ck−1
0

1 +

∞∑
j=1

Fj,k−1y
j

xk (C.115)

=

∞∑
k=1

ck−1
0 xk +

∞∑
k=1

∞∑
j=1

ck−1
0 Fj,k−1y

jxk (C.116)

(C.117)

Multiplying by T (y) gives back our generating function:

g(x, y) =
T (y)x

1−B(y)x
= T (y)

∞∑
k=1

ck−1
0 xk + T (y)

∞∑
k=1

∞∑
j=1

ck−1
0 Fj,k−1y

jxk (C.118)

= c+

m∑
h=1

(m− h+ 1)yh
∞∑
k=1

ck−1
0 xk + T (y)

∞∑
k=1

∞∑
j=1

ck−1
0 Fj,k−1y

jxk

(C.119)

=

m∑
h=1

∞∑
k=1

[
c+c

k−1
0 (m− h+ 1)

]
yhxk + T (y)

∞∑
k=1

∞∑
j=1

ck−1
0 Fj,k−1y

jxk

(C.120)

(C.121)

Focusing on the second series:

T (y)

∞∑
k=1

∞∑
j=1

ck−1
0 Fj,k−1y

jxk = c+

m∑
h=1

(m− h+ 1)yh
∞∑
k=1

∞∑
j=1

ck−1
0 Fj,k−1y

jxk (C.122)

=

m∑
h=1

∞∑
k=1

∞∑
j=1

c+c
k−1
0 (m− h+ 1)Fj,k−1y

j+hxk (C.123)

=

∞∑
k=1

 ∞∑
j=1

m∑
h=1

c+c
k−1
0 (m− h+ 1)Fj,k−1y

j+h

xk
(C.124)

(C.125)

Defining

Hk
j,h ≡ c+ck−1

0 (m− h+ 1)Fj,k−1, (C.126)

35

makes,

T (y)

∞∑
k=1

∞∑
j=1

ck−1
0 Fj,k−1y

jxk =

∞∑
k=1

 ∞∑
j=1

m∑
h=1

Hk
j,hy

j+h

xk (C.127)

=

∞∑
k=1

 ∞∑
j=1

min(j,m)∑
h=1

Hk
j−h,hy

j

xk (C.128)

=

∞∑
k=1

∞∑
j=1

min(j,m)∑
h=1

Hk
j−h,h

 yjxk (C.129)

(C.130)

So,

g(x, y) =

∞∑
L=1

m∑
h=1

c+c
L−1
0 (m− h+ 1)yhxL +

∞∑
L=1

∞∑
h=1

min(h,m)∑
i=1

HL
h−i,i

 yhxL (C.131)

=

∞∑
L=1

∞∑
h=1

θ(m− h)c+c
L−1
0 (m− h+ 1)yhxL +

∞∑
L=1

∞∑
h=1

min(h,m)∑
i=1

HL
h−i,i

 yhxL

(C.132)

=

∞∑
L=1

∞∑
h=1

θ(m− h)c+c
L−1
0 (m− h+ 1) +

min(h,m)∑
i=1

HL
h−i,i

 yhxL (C.133)

(C.134)

where θ(x) is the Heaviside function. And at last, we obtain:

Ph,L = θ(m− h)c+c
L−1
0 (m− h+ 1) +

min(h,m)∑
i=1

HL
h−i,i (C.135)

∴ Ph,L = c+c
L−1
0 max(m− h+ 1, 0) +

min(h,m)∑
i=1

HL
h−i,i (C.136)

We can unravel H using:

Hk
j,h ≡ c+ck−1

0 (m− h+ 1)Fj,k−1, (C.137)

Fj,k ≡
min(j,k)∑
i=1

Dk
i,j−i, (C.138)

Dk
i,j =

(
k

i

)(
c+
c0

)i
Aj,i, (C.139)

Aj,i ≡
min(bj/mc,i)∑

l=0

ail,j−ml, (C.140)

ail,j ≡ (−1)l
(
i

l

)(
j + i− 1

j

)
(C.141)

(C.142)

36

to get:

HL
h−i,i = c+c

L−1
0 (m− i+ 1)Fh−i,L−1 (C.143)

= Cic
L−1
0

minL−1
h−i∑

p=1

DL−1
p,h−i−p (C.144)

= Cic
L−1
0

minL−1
h−i∑

p=1

(
L− 1

p

)(
c+
c0

)p
Ah−i−p,p (C.145)

= Cic
L−1
0

minL−1
h−i∑

p=1

(
L− 1

p

)(
c+
c0

)p minp
b(h−i−p)/mc∑
l=0

apl,h−i−p−ml (C.146)

= Cic
L−1
0

minL−1
h−i∑

p=1

(
L− 1

p

)(
c+
c0

)p minp
b(h−i−p)/mc∑
l=0

(−1)l
(
p

l

)(
h− i−ml − 1

h− i−ml − p

)
(C.147)

= Cic
L−1
0

minL−1
h−i∑

p=1

(
L− 1

p

)
G(h, i, p) (C.148)

(C.149)

where Ci = c+(m− i+ 1) and

G(h, i, p) ≡
(
c+
c0

)p minp
b(h−i−p)/mc∑
l=0

(−1)l
(
p

l

)(
h− i−ml − 1

h− i−ml − p

)
. (C.150)

C.4 Summing over L

Often, the following quantity needs to be evaluated for further applications, like the
probability of winning a fight:

∞∑
L=b

Ph,L = Ph,1

∞∑
L=b

cL−1
0 +

min(h,m)∑
i=1

∞∑
L=b

HL
h,i, (C.151)

Tackling the first term, we get:

∞∑
L=b

cL−1
0 =

∞∑
L=b−1

cL0 (C.152)

=
cb−1
0

1− c0
(C.153)

(C.154)

For the second term, we need:

∞∑
i=a

(
i

k

)
xi =

∞∑
i=1

(
i

k

)
xi −

a−1∑
i=1

(
i

k

)
xi, 1 ≤ k ≤ a (C.155)

=
xk

(1− x)k+1
−
a−1∑
i=1

(
i

k

)
xi (C.156)

(C.157)

37

Focusing on the second term,

∞∑
L=b

HL
h,i = Ci

∞∑
L=b

cL−1
0

minL−1
h−i∑

p=1

(
L− 1

p

)
G(h, i, p) (C.158)

= Ci

∞∑
L=b

minL−1
h−i∑

p=1

cL−1
0

(
L− 1

p

)
G(h, i, p)

 (C.159)

= Ci

h−i∑
L=b

L−1∑
p=1

cL−1
0

(
L− 1

p

)
G(h, i, p) + Ci

∞∑
L=maxb

h−i+1

h−i∑
p=1

cL−1
0

(
L− 1

p

)
G(h, i, p)

(C.160)

= Ci

h−i∑
L=b

L−1∑
p=1

cL−1
0

(
L− 1

p

)
G(h, i, p) + Ci

h−i∑
p=1

 ∞∑
L=maxb

h−i+1

cL−1
0

(
L− 1

p

)G(h, i, p)

(C.161)

= Ci

h−i∑
L=b

L−1∑
p=1

cL−1
0

(
L− 1

p

)
G(h, i, p) + Ci

h−i∑
p=1

 ∞∑
L=maxb−1

h−i

cL0

(
L

p

)G(h, i, p)

(C.162)

= Ci

h−i∑
L=b

L−1∑
p=1

cL−1
0

(
L− 1

p

)
G(h, i, p) + Ci

h−i∑
p=1

 ∞∑
L=0

cL0

(
L

p

)
−

maxb−1
h−i−1∑
L=0

cL0

(
L

p

)G(h, i, p)

(C.163)

= Ci

h−i∑
L=b

L−1∑
p=1

cL−1
0

(
L− 1

p

)
G(h, i, p) + Ci

h−i∑
p=1

 cp0
(1− c0)p+1

−
maxb−1

h−i−1∑
L=0

cL0

(
L

p

)G(h, i, p)

(C.164)

= Ci

h−i∑
L=b

L−1∑
p=1

cL−1
0

(
L− 1

p

)
G(h, i, p) + Ci

h−i∑
p=1

 cp0
(1− c0)p+1

−
maxb−1

h−i−1∑
L=1

(
L

p

)
cL0

G(h, i, p)

(C.165)

Having removed any infinities, this equation is now computationally feasible. It can be
used in further calculations like the probability a player kills their opponent before they
are killed.

38

C.5 Summary

First, given a player’s max hit of m and an opponent’s initial health of h, we define:

c+ =
a

m+ 1
(C.166)

c∗ = mc+ (C.167)

c0 = 1− c∗ (C.168)

Ci = c+(m− i+ 1) (C.169)

where c0 is the probability of doing zero damage, and c+ is the probability of doing any
positive amount of damage. Then, the probability of killing in L turns is given by the
recursive equation:

Ph,L = c0Ph,L−1 + c+

h−1∑
i=maxh−m,1

Pi,L−1, L ≥ 2, h ≥ 1 (C.170)

The boundary conditions are given by:

Ph,1 = c+ max(m− h+ 1, 0) (C.171)

P1,L = c∗c
L−1
0 (C.172)

P1,1 = c∗ (C.173)

This has the following solution:

Ph,L = Ph,1c
L−1
0 +

min(h,m)∑
i=1

HL
h,i, (C.174)

where

HL
h,i ≡ c+cL−1

0 (m− i+ 1)

minL−1
h−i∑

p=1

(
L− 1

p

)
G(h, i, p) (C.175)

G(h, i, p) ≡
(
c+
c0

)p minp
b(h−i−p)/mc∑
l=0

(−1)l
(
p

l

)(
h− i−ml − 1

h− i−ml − p

)
. (C.176)

The probability of winning a fight with an opponent, and drawing is given by:

Pwin =

∞∑
L=1

∞∑
l=L+1

P
mopponent

hplayer,l
P
mplayer

hopponent,L
(C.177)

Pdraw =

∞∑
L=1

P
mopponent

hplayer,L
P
mplayer

hopponent,L
, (C.178)

where Pwin + Plose + Pdraw = 1 and swapping opponent values for player values turns
Pwin into Plose. The sum

∑∞
L=a Ph,L can also be expressed in terms of a finite sum.

C.6 Comments

It would be useful to compute the time complexity required for evaluation. There is an
infinite sum in both Pwin and Plose that must simply be truncated during evaluation. It
would be nice to either find analytic solutions or determine appropriate cutoffs.

39

Part II

Woodcutting

40

Part III

Mining

41

Part IV

Quests

42

Bibliography

[1] 10 most played mmorpgs of 2020. https://bestreamer.com/gaming/

most-played-mmorpg-2019/2/. Retrieved October 02, 2020.

[2] Top 6 most popular mmorpgs sorted by population (2020). https://

altarofgaming.com/all-mmos-sorted-by-population-2018/. Retrieved Octo-
ber 02, 2020.

[3] Ranking the 15 best mmorpgs of all time. https://www.thegamer.com/

best-mmorpgs-ever-wow-runescape/. Retrieved October 02, 2020.

[4] Skills. https://oldschool.runescape.wiki/w/Skills.

[5] Experience. https://oldschool.runescape.wiki/w/Experience.

[6] Quests. https://oldschool.runescape.wiki/w/Quests.

[7] Combat triangle. https://oldschool.runescape.wiki/w/Combat_triangle.

[8] Maximum ranged hit. https://oldschool.runescape.wiki/w/Maximum_ranged_

hit.

[9] Maximum magic hit. https://oldschool.runescape.wiki/w/Maximum_magic_

hit.

43

https://bestreamer.com/gaming/most-played-mmorpg-2019/2/
https://bestreamer.com/gaming/most-played-mmorpg-2019/2/
https://altarofgaming.com/all-mmos-sorted-by-population-2018/
https://altarofgaming.com/all-mmos-sorted-by-population-2018/
https://www.thegamer.com/best-mmorpgs-ever-wow-runescape/
https://www.thegamer.com/best-mmorpgs-ever-wow-runescape/
https://oldschool.runescape.wiki/w/Skills
https://oldschool.runescape.wiki/w/Experience
https://oldschool.runescape.wiki/w/Quests
https://oldschool.runescape.wiki/w/Combat_triangle
https://oldschool.runescape.wiki/w/Maximum_ranged_hit
https://oldschool.runescape.wiki/w/Maximum_ranged_hit
https://oldschool.runescape.wiki/w/Maximum_magic_hit
https://oldschool.runescape.wiki/w/Maximum_magic_hit

	Introduction
	I Combat
	Overview
	Autonomous Mechanics
	Combat Skills, Combat Triangle and Attack Styles
	Equipment Bonuses
	Ticks and Attack Speed
	Summary

	Agency
	Special Attacks
	Temporary Boosts and Healing
	Item Switching and Movement

	Maximum Hits
	Melee
	Ranged
	Magic

	Accuracy
	Models
	Important Quantities
	Crude
	Averaged Piecewise
	Piecewise
	Markov Chain

	Optimizing Player Equipment
	The Projection Vector
	Set Reduction

	Optimizing Training Order
	Dijkstra's algorithm

	Appendices
	Justifying the Recursive Model Approximation
	Power Reduction in the Piecewise Recursive Model
	Power Reduction
	Simplifying

	Fighting Probabilities
	Definitions
	Recursive Equation
	Solution
	Corner
	Top
	Left
	Interior
	Obtaining Power Series

	Summing over L
	Summary
	Comments

	II Woodcutting
	III Mining
	IV Quests

